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Abstract

Though the small-world phenomenon is widespread in many real networks, it is still chal-

lenging to replicate a large network at the full scale for further study on its structure and

dynamics when sufficient data are not readily available. We propose a method to construct

a Watts-Strogatz network using a sample from a small-world network with symmetric degree

distribution. Our method yields an estimated degree distribution which fits closely with that

of a Watts-Strogatz network and leads into accurate estimates of network metrics such as

clustering coefficient and degree of separation. We observe that the accuracy of our method

increases as network size increases.

Introduction

Since the term “small world” was coined first by the Milgram’s pioneering experiment [1],

Watts and Strogatz [2] have proposed the most compelling analytical framework demonstrat-

ing the small-world phenomenon prevalent in a range of social, information, technological,

and biological networks. A small world consists of many local clusters, but all members are

connected with short distance via a few more connected members. These conditions for a

small world to emerge are minimal and many real networks have shown small-world proper-

ties [3–5]. However, it is not straight-forward to quantify “small-world-ness.” A quantitative

model measures the equivalence between a network and a unique Watts-Strogatz (WS) model

[6]. For a real network with high equivalence, the corresponding WS model can be generated

to explore the structure and dynamics.

Even though such equivalence is confirmed, it is not viable to study a large real network

when sufficient data on a population are not available. For example, modern social networks

are very large in sizes and it takes significant resources and time to collect the data of a network

and find key parameters. Web-based experiments accommodating a large number of partici-

pants are more difficult to control in some respects than are those conducted in physical labo-

ratories [7]. When such real experiments are impractical, an artificially structured network can
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be studied instead [8]. However, a large real network with strong small-world properties can-

not be replicated into the corresponding WS model, unless its parameters are estimated from a

sample.

A WS model [2] is characterized by n = number of nodes, K = number of neighbors a node

has to its right side in the regular lattice before rewiring, and p = “rewiring” probability with

which the right end of an arc incident to a node is rewired uniformly randomly to another

node. The size of population under study is represented by n which is known a priori or can be

estimated [9, 10] in many cases. The sample mean of node degrees is an estimator for K since

the total number of arcs remain invariant after rewiring. Among the three parameters, it is the

most challenging to estimate p. Motivated by this immediate need, we formulate a method to

estimate p leading into an estimated degree distribution which fits closely with that of the cor-

responding WS model. These three parameters (n, K, p) indeed suffice to characterize a WS

network. We observe that, from many generated WS networks under the same values of (n, K,

p), variations in network metrics such as clustering coefficient (CC) and degree of separation

(DS) (defined as characteristic path length in [2]) are very small.

A direct question from this motivation, then, is how many arcs are incident to node i 2 N
after rewiring, where N is the set of nodes in a network. We start from deriving the degree dis-

tribution of a network represented by the probability P(δi = m) that node i has a degree of m,

where P is a probability mass function and δi = the degree of node i (or the number of arcs

incidents to node i) after rewiring. A previous derivation of P(δi = m) in [11] is based on the

assumption that δi� K after rewiring, which might not be the case for some WS networks we

have generated. Nonetheless, this assumption allows a simpler formulation as a result. We thus

propose a new formulation of P(δi = m) which is closer to the exact value in a WS network.

Results and discussion

In the regular lattice of a WS network before rewiring, a node i 2 N has degree 2K with K arcs

incident to its right neighbors and K to its left ones. Let Ni be the set of nodes connected to

node i before or during rewiring (whereas δi is the degree of node i after rewiring). Then,

before rewiring, |Ni| = 2K. Note that Ni does not include node i. Node i loses one degree after a

sequence of events below takes place to node j 2 Ni with the assumption of |Ni| = 2K.

1. Arc {i, j} is chosen for rewiring with probability p.

2. One end of arc {i, j} (attached to node i) is chosen with probability 1/2.

3. The chosen end is rewired, with probability (n − 1 − 2K)/n, to a node which is neither

node j nor one of the nodes in Ni.

Consequently, the probability that the degree of a node decreases by 1 is a � 1

2
p ðn� 1� 2KÞ

n .

We admit that |Ni| = 2K might not be the case during rewiring and our formulation of P(δi =

m) is an approximation. The small world property (high local clustering and short paths)

emerges for a small rewiring probability p ranging from 0.001 to 0.1 in Fig 2 in [2]. For a small

p, e.g., p = 0.01, about 1% of the arcs are rewired. Accordingly, the degree of most nodes would

be Ni = 2K during rewiring and this assumption is not significantly limiting. As shown in the

examples we have generated, our approximation still results in small errors.

On the other hand, node i gains one degree after the steps below if arc {j, k}, among the (n
− 2)K arcs not incident initially to node i, is detached and an end of arc {j, k} is rewired to

node i chosen randomly. If i = j or i = k, arc {j, k} is attached back and not rewired.

4. Arc {j, k} is detached for rewiring with probability p.
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5. Node i is chosen with probability 1/n and an end of arc {j, k} is rewired to node i.

Thus, the probability that the degree of a node increases by 1 is β� p/n.

We rewrite the number of degrees after rewiring as δi = 2K − Xi + Yi, where Xi and Yi are

binomial random variables representing the number of degrees lost and the number of degrees

gained at node i, respectively. Then we have

PðXi ¼ xÞ ¼
2K
x

 !

ax ð1 � aÞ
2K� x

; for x ¼ 0; 1; :::; 2K; ð1Þ

PðYi ¼ yÞ ¼
ðn � 2ÞK

y

 !

b
y
ð1 � bÞ

ðn� 2ÞK� y
; for y ¼ 0; 1; :::; ðn � 2ÞK: ð2Þ

and

Pðdi ¼ mÞ ¼ Pð2K � Xi þ Yi ¼ mÞ ð3Þ

¼
Xmin fn� 1� m;2Kg

x¼max f2K� m;0g

PðYi ¼ m � 2K þ x jXi ¼ xÞ PðXi ¼ xÞ: ð4Þ

For m� n or m< 0, P(δi = m) = 0.

In Eq (4), we have bounds as max{2K − m, 0}� x�min{n − 1 − m, 2K}, where x is the

number of degrees lost. For 0�m� 2K, 2K − m� x� 2K. Node i loses at most 2K degrees

since |Ni| = 2K before rewiring, but cannot lose less than 2K − m degrees. Otherwise, δi = m is

impossible. For 2K<m� n − 1 − 2K, 0� x� 2K. In this case, node i can lose all 2K degrees

as long as it can gain from the other n − 1 − 2K nodes and can lose none since 2K< m. For n
− 1 − 2K< m� n − 1, 0� x� n − 1 − m. Since m is larger than in the previous case, node i
loses no more than n − 1 − m degrees and can lose none. In the conditional probability in Eq

(4), Yi = m − 2K + x is immediate from 2K − x + Yi = m.

We assume a large n (e.g., n� K) consistent with a large network which we are mainly

interested in. From Eqs (1), (2) and (4), we have

Pðdi ¼ mÞ ¼
Xmin fn� 1� m;2Kg

x¼max f2K� m;0g

2K
x

 !

ax ð1 � aÞ
2K� x
�

ðn � 2ÞK

m � 2K þ x

 !

b
ðm� 2KþxÞ

ð1 � bÞ
ððn� 2ÞK� ðm� 2KþxÞÞ

:

ð5Þ

The probability mass function of binomial distribution with probability β in Eq (5) can be

approximated by that of a Poisson distribution with rate λ = (n − 2)Kβ = (n − 2)Kp/n for a

large n and a small β, which are the cases in small-world networks. From the fact that a ¼

1

2
p ðn� 1� 2KÞ

n !
p
2

and l ¼
ðn� 2Þ

n Kp! Kp for a large n, Eq (5) can be written as

PðmÞ ¼ Pðdi ¼ mÞ ¼
Xmin fn� 1� m;2Kg

x¼max f2K� m;0g

2K

x

 !
p
2

� �x
1 �

p
2

� �2K� x
�
ðKpÞm� 2Kþx

ðm � 2K þ xÞ!
e� Kp: ð6Þ

Then the mean estimated from Eq (6) is ~m ¼
Pn

m¼0
mPðmÞ and the standard deviation is

~s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

m¼0
ðm � ~mÞ

2PðmÞ
q

. From now on, we use interchangeably use P(m) and P(δi = m).
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Fig 1 includes an actual WS network generated with parameters of (n = 1,000, K = 8,

p = 0.04). As shown in Fig 2, the degree distribution of the generated WS network is symmetric

and closely estimated by Eq (6). Due to the symmetry of degrees in WS networks, our frame-

work is intended for networks with symmetric degree distribution.

The example WS network in Fig 1 is not the only one whose node degrees are close to those

estimated by Eq (6). We now demonstrate their statistical fit via 8 tuples of parameters which

were set to be n = 5,000, 10,000, K = 50, 75 and p = 0.01, 0.05. For each tuple of (n, K, p), 100

WS networks were generated and their node degrees were recorded for two tests performed.

First, a chi-square test was performed for each of 800 WS networks between the actual node

degrees and estimated values (nP(δi = m)) given by Eq (6). None of the 800 tests were signifi-

cant at the given significance level of α = 5% and these results corroborate our observation in

Fig 1. A Watts-Strogatz network. This example with parameters of (n = 1,000, K = 8, p = 0.04), generated in

Mathematica 10 by Wolfram Research, has CC = 0.6170 and DS = 4.1531. Nodes are distinguished by

different sizes and colors representing their degrees ranging from from 13 to 19.

https://doi.org/10.1371/journal.pone.0179120.g001
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Fig 2. Second, a t-test was performed on the number of nodes for each degree m for 100 WS

networks with respect to each tuple of (n, K, p). The 95% confidence interval is

m̂m � t0:025ðŝm=
ffiffiffiffiffiffiffiffi
100
p

Þ, where m̂m is the sample mean from 100 WS networks and ŝm is the

sample standard deviation. For each tuple and each m, the value of nP(δi = m) estimated by Eq

(6) lied within the corresponding confidence interval.

Fig 3 shows the distributions of CC and DS from 1,000 WS networks randomly generated

with parameters of (n = 1,000, K = 8, p = 0.04) kept the same as in Fig 1. The distributions of

CC and DS are symmetric with small ranges (0.6048� CC� 0.6336 and 4.0278�

DS� 4.3333). Thus, given estimates of n, K and p are accurate, the resulting estimates of CC
and DS would also be accurate. It is promising to use our method to estimate K and p from a

sample and then evaluate network metrics such as CC and DS of the corresponding WS

network.

Given that n is known or estimated, we propose an algorithm below to find estimates K̂ and

p̂ for their population values of K and p, respectively. Let S = {(i, δi); i = 1, . . ., s} be a set of s
individuals sampled from a WS network, where individual i has a degree of δi. Since the total

number of arcs remains the same after rewiring, an estimate for the sample mean is K̂ ¼
ð
Ps

i¼1
diÞ=ð2sÞ and the sample standard deviation is estimated to be

ŝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
Ps

i¼1
di � 2K̂Þ2=ðs � 1Þ

q

. Then we perform a search for p̂ until the standard deviation

(~sðp̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

m¼0
ðm � ~mÞ

2PðmÞ
q

, where ~m ¼
Pn

m¼0
mPðmÞ) calculated from Eq (6) gets close

enough to ŝ. Our algorithm is based on the key observation that, as the rewiring probability

increases in the WS procedure, the variations of degrees also increase in the resulting network.

Thus, given ~sðp̂Þ from Eq (6), we find p̂ in a “reverse” manner.

Fig 2. Distributions of degrees in a Watts-Strogatz network and degrees estimated by Eq (6). The WS network was generated with parameters of

(n = 1,000, K = 8, p = 0.04).

https://doi.org/10.1371/journal.pone.0179120.g002
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Algorithm 1

Input:n, (δi, i = 1, . . ., s)
Define � with a very smallvalue(e.g.,0.00001).

Calculate K̂ ¼
Ps

i¼1
di=ð2sÞ and ŝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps

i¼1
ðdi � 2K̂ Þ2=ðs � 1Þ

q

.

Let pl = 0, pu = 1 and p̂ ¼ ðpl þ puÞ=2.

Given p̂, use Eq (6) to calculate ~m ¼
Pn

m¼0
mPðmÞ and ~sðp̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

m¼0
ðm � ~mÞ

2PðmÞ
q

.

while ~sðp̂Þ =2 ½ŝ � �; ŝ þ �� do
If ~sðp̂Þ > ŝ, let pu ¼ p̂. Else, let pl ¼ p̂.
Let p̂ ¼ ðpl þ puÞ=2 and use Eq (6) to calculate ~m and ~sðp̂Þ.

end while
Constructa WS networkwith parametersof ðn; K̂ ; p̂Þ, and calculateCC and DS.
Output : ðn; K̂ ; p̂Þ;CC; DS

Fig 4 shows results from application of Algorithm 1 to 200 WS networks (100 networks for

n = 10,000 and 100 networks for n = 20,000) with K = 80 and a randomly chosen p 2 [0.005,

0.05]. From each network, s = 100 nodes were randomly sampled along with their degrees to

calculate p̂ from Algorithm 1. The closer the labels are to the diagonal, the more accurate the

estimated values match the actual ones. In Fig 4, we normalized all estimated values between 0

and 1 to plot them together. Closer matches between the estimated and actual values are

observed for larger networks with n = 20,000. The variations around the diagonal seem to be

consistent with those in Fig 3, but exacerbated slightly due to the use of p̂ as an estimate of p.

In Fig 5, we measure the accuracy of p̂ calculated by Algorithm 1. For each combination of

n = 10,000, 20,000, K = 80 and s/n (percentage of nodes sampled) = 1%, 3%, 5%, we generated

30 WS networks with a randomly chosen p 2 [0.05, 0.2] and calculated p̂ from Algorithm 1.

Then, for each combination, we calculated the sample mean of 30 ratios (p̂=p). The ratio of 1

represents an exact match between p̂ and p. As sample sizes increase from 1% to 5% of nodes

sampled, mean ratios of p̂=p approach to 1. Also, as in Fig 4, higher accuracy is observed for

Fig 3. Distributions of CC and DS. 1,000 WS networks were randomly generated with parameters of (n = 1000, K = 8, p = 0.04).

https://doi.org/10.1371/journal.pone.0179120.g003
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larger networks with n = 20,000. For each percentage of nodes sampled (s/n = 1%, 3%, 5%), the

confidence interval for n = 20,000 is narrower than that for n = 10,000 while both of the confi-

dence intervals overlap with p̂=p ¼ 1.

Table 1 summarizes the sample means and 95% confidence intervals (in a format of sample

mean ± margin of error) in Fig 5. A margin of error is calculated as t0:025ðsr=
ffiffiffiffiffi
30
p
Þ, where σr is

the sample standard deviation of 30 ratios. Again, For each percentage of nodes sampled (s/
n = 1%, 3%, 5%), the margins of error for n = 20,000 are smaller resulting in narrower confi-

dence intervals. Thus, our method adds more accuracy for larger networks (e.g., large-scale

social networks).

Conclusion

We have presented a method to construct a Watts-Strogatz network using a sample from a

small-world network with symmetric degree distribution. Our method yields an estimated

degree distribution which fits closely with that of a WS network and allows to characterize the

population with accurate estimates of network metrics such as clustering coefficient and

degree of separation. This is particularly useful when sufficient information on the population

is not available due to limited resources and time. As observed, our method is more accurate

for larger networks.

An obvious limitation of our method is the symmetry of degree distribution and we admit

that many real networks have skewed degree distributions. Applications of our method are

Fig 4. Estimated values of p, CC and DS. For each case of (a) n = 10,000 and (b) n = 20,000, 100 WS networks were generated with K = 80 and a randomly

chosen p 2 [0.005, 0.05]. From each network, s = 100 nodes were randomly sampled along with their degrees to calculate p̂ from Algorithm 1. All estimated

values were normalized between 0 and 1.

https://doi.org/10.1371/journal.pone.0179120.g004
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also limited to networks revealing strong small-world properties which can be well represented

by a WS model, since our method is formulated based on the WS rewiring procedure. For a

real network either with non-symmetric degree distribution or with weak small-world proper-

ties, we still hope that our method serves as a building block for potential revisions or

extensions.

Replicating a large network from a sample allows further experiments on a generated net-

work for more insights on its structure and dynamics. This would be feasible if some funda-

mental properties (e.g., small-world properties) of the network are identified and formulated

in an analytical model (e.g., the WS model). Then, key parameters of the model can be esti-

mated and a full-scale network can be constructed.

Fig 5. Sample means and 95% confidence intervals of 30 ratios of p̂=p. For each combination of n = 10,000, 20,000, K = 80 and s/n = 1%, 3%, 5%, 30 WS

networks were generated with a randomly chosen p 2 [0.05, 0.2]. For each network, the value of p̂ was calculated from Algorithm 1.

https://doi.org/10.1371/journal.pone.0179120.g005

Table 1. Sample means and 95% confidence intervals of 30 ratios of p̂=p.

n s/n = 1% s/n = 3% s/n = 5%

10,000 0.9943 ± 0.0638 0.9952 ± 0.0371 1.0050 ± 0.0258

20,000 0.9850 ± 0.0362 0.9908 ± 0.0218 1.0061 ± 0.0152

Table notes 95% confidence intervals are shown in a format of sample mean ± margin of error. For each combination of n = 10,000, 20,000, K = 80 and s/

n = 1%, 3%, 5%, 30 WS networks were generated with a randomly chosen p 2 [0.05, 0.2]. For each network, the value of p̂ was calculated from Algorithm 1.

https://doi.org/10.1371/journal.pone.0179120.t001

Constructing a Watts-Strogatz network from a small-world network with symmetric degree distribution

PLOS ONE | https://doi.org/10.1371/journal.pone.0179120 June 12, 2017 8 / 9

https://doi.org/10.1371/journal.pone.0179120.g005
https://doi.org/10.1371/journal.pone.0179120.t001
https://doi.org/10.1371/journal.pone.0179120


Author Contributions

Conceptualization: MM SK RH.

Data curation: MM SK.

Formal analysis: MM SK RH.

Investigation: MM SK.

Methodology: MM SK RH.

Project administration: SK MM RH.

Resources: MM SK RH.

Software: MM SK.

Supervision: SK MM RH.

Validation: SK MM RH.

Visualization: MM SK RH.

Writing – original draft: SK MM RH.

Writing – review & editing: SK MM RH.

References
1. Milgram S. The small-world problem. Psychol Today. 1967 1(1):61–67.

2. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1988 Jun; 393:440–442.

https://doi.org/10.1038/30918

3. Amaral LAN, Scala A, Barthélémy M, Stanley HE. Classes of small-world networks. Proc Natl Acad Sci

U S A. 2000 97(21):11149–11152. https://doi.org/10.1073/pnas.200327197 PMID: 11005838

4. Newman MEJ. The structure and function of complex networks. SIAM Rev Soc Ind Appl Math. 2003 45

(2):167–256.

5. Schnettler S. A structured overview of 50 years of small-world research. Soc Networks. 2009 31:165–

178. https://doi.org/10.1016/j.socnet.2008.12.004

6. Humphries MD, Gurney K. Network ‘Small-World-Ness’: A quantitative method for determining canoni-

cal network equivalence. PLoS One. 2008 3(4):e0002051. https://doi.org/10.1371/journal.pone.

0002051 PMID: 18446219

7. Salganik MJ, Dodds PS, Watts DJ. Experimental study of inequality and unpreditability in an artificial

cultural market. Science. 2006 311:854–856. https://doi.org/10.1126/science.1121066 PMID:

16469928

8. Centola D. The spread of behavior in an online social network experiment. Science. 2010 329:1194–

1197. https://doi.org/10.1126/science.1185231 PMID: 20813952

9. Killworth PD, Johnsen EC, Russell Bernard H, Shelley GA, McCarty C. Estimating the size of personal

networks. Soc Networks. 1990 23:289–312. https://doi.org/10.1016/0378-8733(90)90012-X

10. Maltiel R, Raftery AE, McCormick TH, Baraff AJ. Estimating population size using the network scale up

method. Ann Appl Stat. 2015 9(3):1247–1277. https://doi.org/10.1214/15-AOAS827 PMID: 26949438

11. Barrat A, Weigt M. On the properties of small-work network models. Eur Phys J B. 2000 13:547–560.

https://doi.org/10.1007/s100510050067

Constructing a Watts-Strogatz network from a small-world network with symmetric degree distribution

PLOS ONE | https://doi.org/10.1371/journal.pone.0179120 June 12, 2017 9 / 9

https://doi.org/10.1038/30918
https://doi.org/10.1073/pnas.200327197
http://www.ncbi.nlm.nih.gov/pubmed/11005838
https://doi.org/10.1016/j.socnet.2008.12.004
https://doi.org/10.1371/journal.pone.0002051
https://doi.org/10.1371/journal.pone.0002051
http://www.ncbi.nlm.nih.gov/pubmed/18446219
https://doi.org/10.1126/science.1121066
http://www.ncbi.nlm.nih.gov/pubmed/16469928
https://doi.org/10.1126/science.1185231
http://www.ncbi.nlm.nih.gov/pubmed/20813952
https://doi.org/10.1016/0378-8733(90)90012-X
https://doi.org/10.1214/15-AOAS827
http://www.ncbi.nlm.nih.gov/pubmed/26949438
https://doi.org/10.1007/s100510050067
https://doi.org/10.1371/journal.pone.0179120

